Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.

نویسندگان

  • Seungmuk Ji
  • Joonsik Park
  • Hyuneui Lim
چکیده

The sub-wavelength structures in moth eyes exhibit fascinating antireflective properties over the broadband wavelength region and at large incident angle by generating an air-mixed heterogeneous optical interface. In this work, antireflective behavior of transparent glass is observed with the elaborate controls of the nanopillar morphology. The reflectance spectrum shows a red shift and a notable light scattering with increase of the height of the nanopillars. The nanopillar arrays with a pointed cone shape have better optical performance in visible range than the rounded cone shape which is typical antireflective nanostructures in nature. Based on the observed antireflective behaviors, the flat and low value reflectance spectrum in the visible wavelength range is demonstrated by moth eye mimicking nanostructures on both sides of a glass surface. It is a unique strategy to realize a flat and broadband spectrum in the visible range showing 99% transparency via the appropriate matching of nanopillar height on the front and back sides of glass. The controlled reflection based color tuning on the antireflective and transparent glass is also obtained by adjusting the height of the nanopillar arrays on both sides. The visibility and self-cleaning ability of moth eye mimicking glass are examined for practical applications such as antireflection and self-cleaning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures.

Optical surfaces that can repel both water and oil have much potential for applications in a diverse array of technologies including self-cleaning solar panels, anti-icing windows and windshields for automobiles and aircrafts, low-drag surfaces, and antismudge touch screens. By exploiting a hierarchical geometry made of two-tier nanostructures, primary nanopillars of length scale ∼ 100-200 nm s...

متن کامل

Broadband antireflection and field emission properties of TiN-coated Si-nanopillars.

Broadband antireflection and field emission characteristics of silicon nanopillars (Si-NPs) fabricated by self-masking dry etching in hydrogen-containing plasma were systematically investigated. In particular, the effects of ultrathin (5-20 nm) titanium nitride (TiN) films deposited on Si-NPs by atomic layer deposition (ALD) on the optoelectronic properties were explored. The results showed tha...

متن کامل

Broadband and omnidirectional antireflection employing disordered GaN nanopillars.

Disordered GaN nanopillars of three different heights: 300, 550, and 720 nm are fabricated, and demonstrate broad angular and spectral antireflective characteristics, up to an incident angle of 60? and for the wavelength range of lambda=300-1800 nm. An algorithm based on a rigorous coupled-wave analysis (RCWA) method is developed to investigate the correlations between the reflective characteri...

متن کامل

Colloidal subwavelength nanostructures for antireflection optical coatings.

A two-dimensional (2D) subwavelength nanostructure for antireflection coating is fabricated upon a transparent substrate. Self-assembled 2D colloidal crystals are used as a nanoscale composite material with controlled thickness and low refractive index. The feature size of the structure is approximately 105 nm. The structure is used for antireflection coating, and the measured reflectivity of a...

متن کامل

Nanostructured as-deposited indium tin oxide thin films for broadband antireflection and light trapping.

Indium tin oxide (ITO) thin films were sputter-deposited at ambient temperature on a glass-like substrate that was periodically nanostructured by UV nanoimprint lithography. Cross gratings of the corrugated and conformal ITO, with different periods and modulation depths, were tailored to exhibit light trapping or antireflection properties at specific spectral windows by combined optical simulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 15  شماره 

صفحات  -

تاریخ انتشار 2012